Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity.
نویسندگان
چکیده
Resistance to multiple chemotherapeutic agents has been related to the production of P-glycoprotein, a trans-membrane drug efflux pump that is encoded by the multidrug resistance (MDR) gene mdr1. To investigate whether mdr1 could be involved in clinical resistance to chemotherapy in acute leukemias, we have analyzed retrospectively the RNA from adult acute leukemia cells by slot-blot hybridization with a human mdr1 probe. Units of mdr1 expression were defined by reference to drug-sensitive human sarcoma and K562 leukemia cell lines (1 U) and the highly resistant doxorubicin selected leukemia cells K562/R7 (50 U). We studied 41 adult patients with acute leukemias: 5 acute lymphoblastic leukemias, 23 acute myeloid leukemias, and 13 secondary leukemias or blast crisis of chronic myelogenous leukemia. Expression of 10 U or more of mdr1 was found in 6 of 31 (19%) leukemias at diagnosis, versus 5 of 10 (50%) after relapse from therapy, P = .06. The complete remission rate and in vitro sensitivity to daunorubicin were both correlated with low expression (1 U, v 2 U or more) of mdr1. Among 36 evaluable attempts to induce remission, the complete remission rate was 67% (8 of 12) for patients with undetectable or minimal mdr1 expression (1 U), versus 29% (7 of 24) in patients with 2 U or more of expression, P = .03. In vitro resistance to daunorubicin or other MDR-related drugs was associated with expression of 2 U or more of mdr1 in 11 of 11 cases, while specimens that were sensitive to these agents were negative for mdr1 expression in 5 of 11 cases, P = .03. These data suggest that mdr1 expression contributes to chemoresistance in acute leukemia. Determination of mdr1 gene expression may be useful in designing therapy for patients with leukemia.
منابع مشابه
Multidrug Resistance (mdr l ) Gene Expression in Adult Acute Leukemias: Correlations With Treatment Outcome and In Vitro Drug Sensitivity
Resistance to multiple chemotherapeutic agents has been related to the production of P-glycoprotein, a trans-membrane drug efflux pump that is encoded by the multidrug resistance (MDR) gene mdrl. To investigate whether mdrl could be involved in clinical resistance to chemotherapy in acute leukemias, we have analyzed retrospectively the RNA from adult acute leukemia cells by slot-blot hybridizat...
متن کاملThe effect of resveratrol on the expression of MDR1 gene in leukemic lymphoblast’s of acute lymphoblastic leukemia patients
Background: Chemotherapy plays a very important role in the treatment of leukemia but the resistance properties of the lymphoblasts limit the effect of chemotherapy. One of the main mechanisms of resistance to chemotherapy is the increased expression of MDR1 gene. The aim of this study was to explore the effect of resveratrol on the expression of MDR1 gene in leukemic lymphoblast of new...
متن کاملHypomethylation status of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias.
Selection of human cells for resistance to vincristine or doxorubicin often induces overexpression of the multidrug resistance 1 gene (MDR1), which encodes the cell surface P-glycoprotein, as a result of gene amplification or transcriptional activation. Moreover, overexpression of the MDR1 gene has been shown to be associated closely with clinical outcome in various hematological malignancies, ...
متن کاملExpression of Multidrug Resistance 1, Lung Resistance Protein and Breast Cancer Resistance Protein Genes in Chronic Leukemias
One of the major problems in treatment of leukemias is multidrug resistance, which is already present at diagnosis or develops after chemotherapy. The gene expression levels of multidrug resistance resistance 1 (MDR1), breast cancer resistance protein (BCRP) and lung resistance-resistance protein (LRP) were evaluated in blood samples of 20 CLL and 24 CML patients using RT-PCR. MDR1, BCRP and LR...
متن کاملInhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdr1) antisense oligonucleotides.
To overcome the problem of multidrug resistance, we investigated the effectiveness of phosphrothioate antisense oligonucleotides (MDR1-AS) in suppressing multidrug resistance gene (mdr1) expression in drug-resistant acute myelogenous leukemia (AML) blast cells and the K562 adriamycin-resistant cell line K562/ADM. The percentage of cells with the mdr1 gene product P-glycoprotein (P-gp) was decre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 78 3 شماره
صفحات -
تاریخ انتشار 1991